% COMPASS

INSTITUTE OF PLASMA PHYSICS ASCR

Development of 3D ferromagnetic model of tokamak core with
strong toroidal asymmetry

Tomas Markovict4*, Mikhail Gryaznevich3#4, l[van Durant, Vojtech Svoboda>

1 Institute of Plasma Physics AS CR, Prague, Czech Republic
2 Charles University in Prague, Faculty of Mathematics and Physics, Prague, Czech Republic
3 Tokamak Energy Ltd, Culham Science Centre, Abingdon, United Kingdom

4 Technical University of Denmark, Kgs. Lyngby, Denmark

> Czech Technical University in Prague, FNSPE, Prague, Czech Republic

* Corresponding author. Email address: markovic@ipp.cas.cz

Introduction

» Unsaturated ferromagnetic material affects magnetic field
In its vicinity. In tokamaks — core, ferromagnetic inserts, etc.
= ELM mitigation experiments on JET using MP fields
generated by EFCCs — effect of iron core on 3D field
unknown.
= Model of arbitrary 3D-shaped ferromagnets in development
presented here. Specifically:
* Results of first benchmarking of 3D form of the code,
using tokamak with strong iron core asymmetry.
« Comparison of 3D model to 2D core axisymmetric
equivalent (where possible)

Iron core model principle

Main idea — Represent the whole volume of the core by its

surface (I.e. by boundary representing the . discontinuity)
1. Homogeneously magnetized medium - M [Am-1] magnetization
vector - bound surface (screening) current:
o(r) = M(r) X n(r)
2. No free currents on ferromagnet - Ampere’s law - continuity of
tangential H; on both sides of boundary:
n(r) X (Ho(r) — Hy(r)) =0
3. Substitution of 2. into 1. :
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Left-hand side = relation — Bext(r) X n(r).
for o over the whole surface | Mo |

Right-hand side - sources of

If core boundary = set of N rectangular surfaces o _
magnetic field (coils+plasma)

- Set of 2N non-linear equations:

Non-linearity:
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u(r) = f(B(r))

Summary

= We present model of ferromagnet, based on boundary
iIntegral method.
= Toroidal modulation of tokamak By, field due to core
presence observed experimentally. No significant effect on
vertical B, component.
= 3D model predictively characterizes observed modulation:
* Very good agreement for near-field configuration.
« Satisfactory agreement for far-field configuration.
-> Non-linearity due to core saturation non-negligible?
Future work
= |mplementation of non-linearity effects
= Modelling of iron core of tokamak JET
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Experimental arrangement «

= Benchmarking device — Tokamak GOLEM

-> Strongly asymmetric iron core.

= B, generated by tokamak poloidal field

colls

= 3D Hall probe placed in different toroidal

and R-Z positions and used to measure By

= Measurements and axisymmetric model

from [1] included in analysis as well.
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Filaments and shape of
reference 2D model
Standard approach:
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3D core model with outline of its surface elements

B_theta by outer coils — vacuum approx.
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