

Development of 3D ferromagnetic model of tokamak core with strong toroidal asymmetry

Tomas Markovic^{1,2,*}, Mikhail Gryaznevich^{3,4}, Ivan Duran¹, Vojtech Svoboda⁵

- ¹ Institute of Plasma Physics AS CR, Prague, Czech Republic
- ² Charles University in Prague, Faculty of Mathematics and Physics, Prague, Czech Republic
- ³ Tokamak Energy Ltd, Culham Science Centre, Abingdon, United Kingdom
- ⁴ Technical University of Denmark, Kgs. Lyngby, Denmark
- ⁵ Czech Technical University in Prague, FNSPE, Prague, Czech Republic
- * Corresponding author. Email address: markovic@ipp.cas.cz

Introduction

- Unsaturated ferromagnetic material affects magnetic field in its vicinity. In tokamaks – core, ferromagnetic inserts, etc.
- ELM mitigation experiments on JET using MP fields generated by EFCCs – effect of iron core on 3D field unknown.
- Model of arbitrary 3D-shaped ferromagnets in development presented here. Specifically:
 - Results of first benchmarking of 3D form of the code, using tokamak with strong iron core asymmetry.
 - Comparison of 3D model to 2D core axisymmetric equivalent (where possible)

Iron core model principle

Main idea – Represent the whole volume of the core by its surface (i.e. by boundary representing the μ_r discontinuity)

1. Homogeneously magnetized medium → M [Am⁻¹] magnetization vector → bound surface (screening) current:

2. No free currents on ferromagnet - Ampére's law → continuity of tangential \mathbf{H}_i on both sides of boundary:

$$\mathbf{n}(\mathbf{r}) \times (\mathbf{H}_0(\mathbf{r}) - \mathbf{H}_1(\mathbf{r})) = 0$$

 $\sigma(\mathbf{r}) = \mathbf{M}(\mathbf{r}) \times \mathbf{n}(\mathbf{r})$

Substitution of 2. into 1.:

$$\frac{\mu_0}{2}\sigma(\mathbf{r}) = \lambda(\mathbf{r})\mathbf{B}(\mathbf{r}) \times \mathbf{n}(\mathbf{r}) \qquad \text{Sought quantity (calculated from } \sigma)$$

$$\mathbf{B}(\mathbf{r}) = \mathbf{B}_{\mathbf{ext}}(\mathbf{r}) + \mathbf{B}_{\mathbf{core}}(\mathbf{r})$$
Therefore:
$$\sigma(\mathbf{r}) - \frac{\lambda(\mathbf{r})}{2\pi} \int_{\mathcal{S}} \left(\sigma(\mathbf{r}') \times \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|^3} \right) d\mathbf{S}' \times \mathbf{n}(\mathbf{r}) =$$

$$\mathbf{Left\text{-hand side}} \rightarrow \text{relation for } \sigma \text{ over the whole surface} \qquad = \frac{2\lambda(\mathbf{r})}{\mu_0} \mathbf{B}_{\mathbf{ext}}(\mathbf{r}) \times \mathbf{n}(\mathbf{r}).$$

If core boundary = set of N rectangular surfaces \rightarrow Set of 2N non-linear equations:

$$\sigma_k^i + \lambda^i \sum_{j \neq i}^N \sum_{l}^2 \left(A_l^{ij} \sigma_l^j \right) = \lambda^i C_k^i$$

Right-hand side → sources of magnetic field (coils+plasma)

Non-linearity:

$$\lambda(\mathbf{r}) = \frac{\mu_r(\mathbf{r})-1}{\mu_r(\mathbf{r})+1}$$
while:

$$\mu_r(\mathbf{r}) = f(\mathbf{B}(\mathbf{r}))$$

Summary

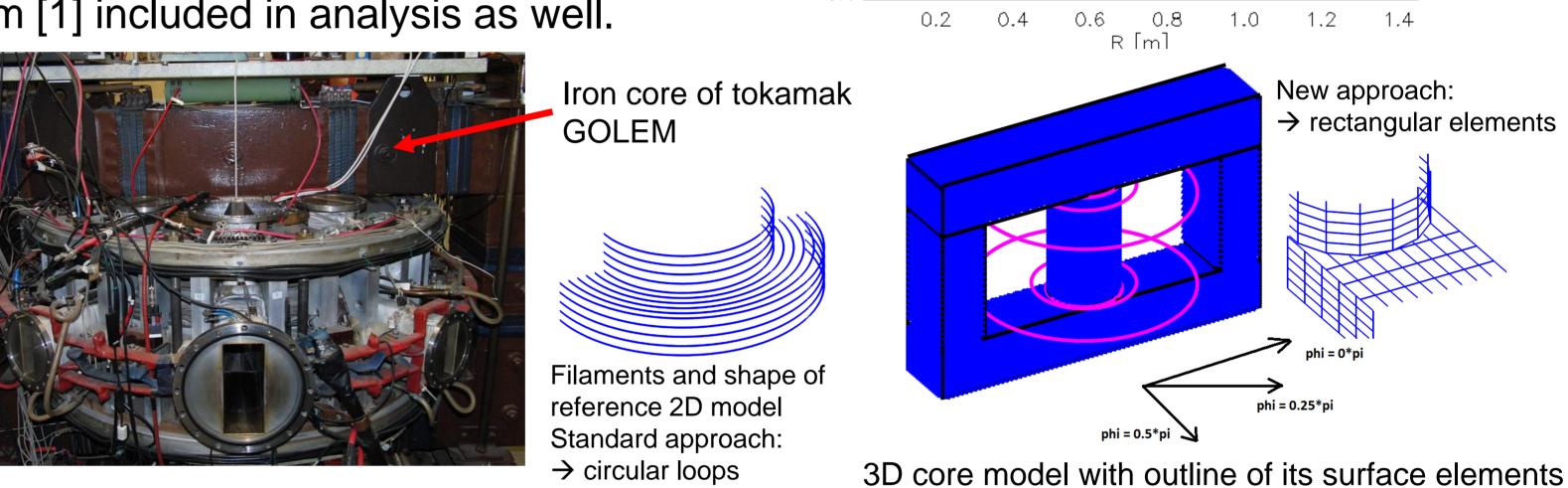
- We present model of ferromagnet, based on boundary integral method.
- Toroidal modulation of tokamak B_R field due to core presence observed experimentally. No significant effect on vertical B_7 component.
- 3D model predictively characterizes observed modulation:
 - Very good agreement for near-field configuration.
 - Satisfactory agreement for far-field configuration.
 - → Non-linearity due to core saturation non-negligible?

Future work

- Implementation of non-linearity effects
- Modelling of iron core of tokamak JET

References

Fus. Eng. Des. 88 (2013).


[1] T. Markovic, M. Gryaznevich et al., Evaluation of applicability of 2D iron core model for two-limb configuration of GOLEM tokamak,

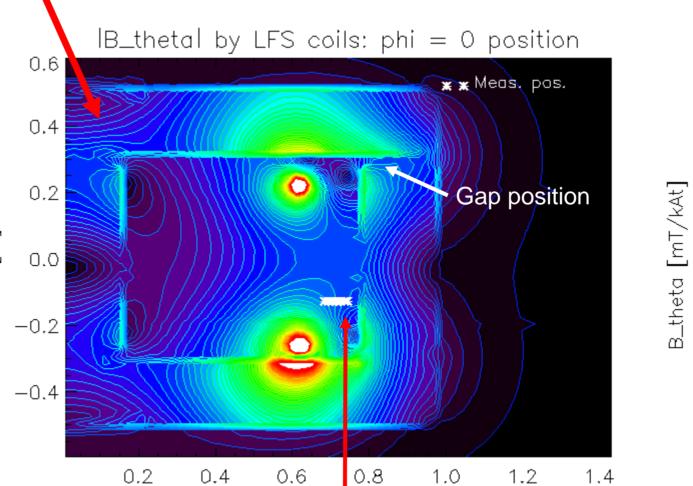
the Czech Republic under grant P205/11/2341,

Acknowledgements This work was partly funded by the Grant Agency of partly supported by MSMT Project LM2011021 and partly by RVO68407700 grant.

Experimental arrangement

- Benchmarking device Tokamak GOLEM → Strongly asymmetric iron core.
- B_R generated by tokamak poloidal field coils
- 3D Hall probe placed in different toroidal and R-Z positions and used to measure B_R
- Measurements and axisymmetric model from [1] included in analysis as well.

Model vs. Measurements *R-Z* profiles of: Vacuum approximation

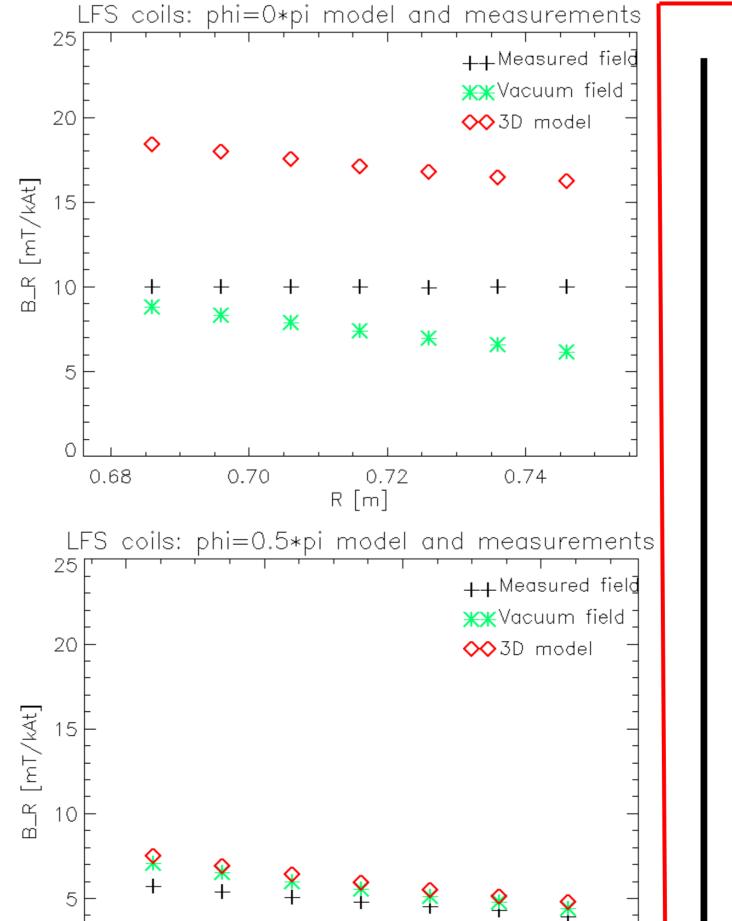

generated by LFS coils

Under and inside

of core limbs

Perpendicular to core limbs

(without iron core)

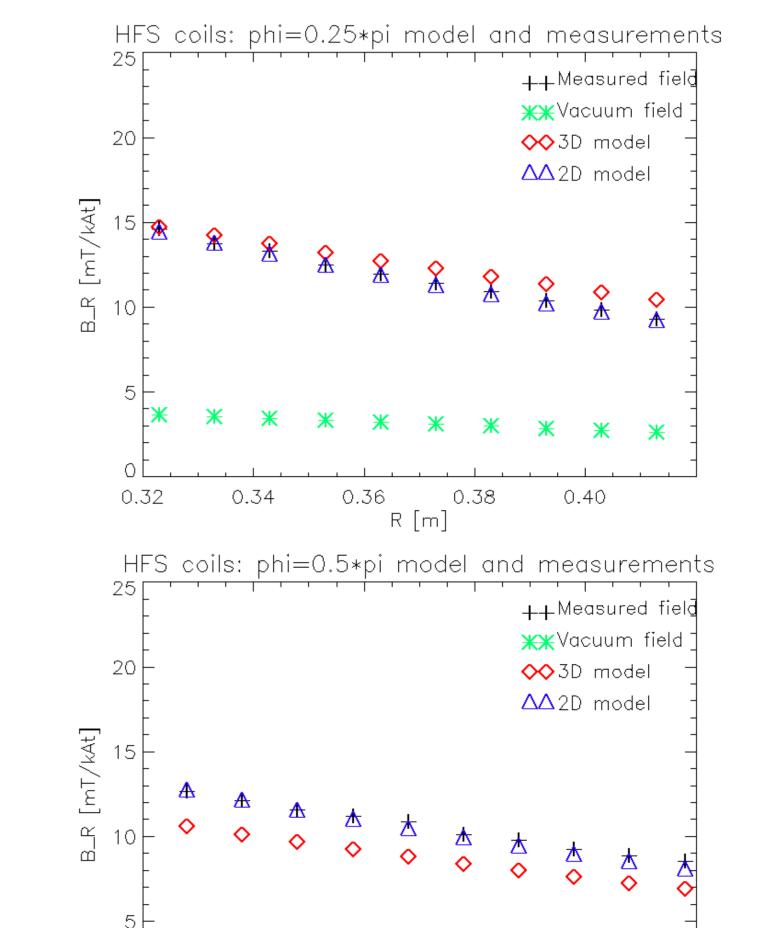

8.0 1.0 1.2 B_{thetal} by LFS coils: phi = 0.5 pi position 60 💥 💥 Meas. pos. 0.4 0.2 0.0 -0.2

-0.4

B_theta by outer coils — vacuum approx.

🗕 Core outline

≭ ₹ Phi=0.5*pi



Measurements inside chamber

- Field generated by HFS coils only → Near-field configuration
- Position close to central column → Both 2D and 3D model applicable

RI

1.0

0.36

R [m]

Measurements outside chamber

0.74

R [m]

0.72

- Field generated by LFS coils only → Far-field configuration
- Close to limbs field amplification
- Perpendicular to limbs vacuum field
- Measured magnitude lower than modelled – partial saturation?