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Abstract
The paper presents an artificial neural network-based model for tomography reconstruction of visible plasma radiation dis-
tribution at the GOLEM tokamak. The model was trained using a dataset from emissivity phantoms and associated synthetic 
measurements from a poloidal cross-section of the GOLEM tokamak. The model validation was performed on the predic-
tion of various unseen phantom samples with shapes similar to those in the training dataset. The backfit of line-integrated 
measurements indicates the considerable potential of the proposed model for reconstructing the position, size, shape and 
intensity of the radiation function of one cross section. Additionally, the neural network-based model offers a significantly 
shorter prediction time compared to traditional tomography methods, providing a substantial advantage.
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Introduction

The interpretation of radiation as a diagnostic tool to charac-
terize plasma properties is a critical aspect of fusion plasma 
confinement. In tokamak plasma, the tomographic inversion 
methods arise in the field of the reconstruction of the local 
radiation emissivity using the plasma projections measure-
ments [1]. The reconstruction accuracy of plasma parameters 
mainly contributes to precise monitoring and control, which 
are essential for achieving an efficient plasma confinement 
[2]. However, the limited field of view causes the measured 
data sparse, leading the implementation of regularization 
method introducing computationally expensive inversion 
process [3]. On the other hand, the rapid changes occurring 
during the plasma discharge underline the importance of 
achieving high temporal resolution [4].

Beyond the inversion result accuracy, the important role 
of the real-time monitoring [5] has prompted researchers 
to leverage Machine Learning (ML) techniques [6], such 

as Artificial Neural Network (ANN)-based models [7]. In 
tomography, the neural networks are implemented to train 
a model to reconstruct the value associated with each pixel 
with a high accuracy, effectively modeling the entire grid 
pattern [8]. The ability to yield a large number of recon-
structions per second at high resolution is a considerable 
advantage of the trained model, enabling the detection of the 
plasma profile throughout an entire discharge. This capabil-
ity provides a promising potential for real-time control and 
tokamak disruption prediction [9]. Several methods, such as 
Feedforward Neural Networks (FNNs) with fully-connected 
layers [10] and deconvolutional neural networks, which are 
the inverse of Convolutional Neural Networks (CNNs) [11], 
have demonstrated high accuracy in plasma tomography. 
Besides the optimal neural network structure and the proper 
training method, the performance of the model critically 
depends on the coverage and completeness of the training 
data [12]. The model can be trained using a real experi-
mental dataset, which captures a variety of the most com-
mon conditions [13], or a representative synthetic dataset, 
which offers advantages in fast data creation and less risk 
of overfitting.

In previous work [14], the images captured by two vis-
ible cameras were used for tomography reconstruction of 
the radiation function for a single cross-section by imple-
menting the Tomotok package [15]. Then, in order to reach 
a model with shorter reconstruction time, the tomography 
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reconstruction result of different plasma discharges was used 
as a dataset to train a ML-based model [16]. However, due to 
the role of the training dataset in model learning, the inver-
sion errors commonly encountered in traditional tomogra-
phy method can negatively impact the model’s accuracy. In 
order to eliminate the mentioned inversion error, and achieve 
relatively higher accuracy, this study attempts to apply a rep-
resentative synthetic dataset to train an ANN-based tomog-
raphy model. The synthetic dataset is constructed by samples 
consisting of emissivity phantoms and associated synthetic 
measurements corresponding to one poloidal cross-section 
of the GOLEM tokamak. The model is trained to predict 
the radiation function corresponding to the images captured 
by two Photron Mini UX high-speed cameras with crossed 
fields of view, placed in the same poloidal cross-section at 
GOLEM [17].

This paper is organized as follows: Section Overview 
of Neural Network gives a brief overview of artificial neu-
ral network. Section ANN-based Tomography at GOLEM 
Tokamakdescribes an ANN-based tomography model at 
the system under investigation, the GOLEM Tokamak with 
installed fast visible cameras, Training Dataset and Train-
ing Process. Section Results and Discussion details and 
discusses the reconstruction result provided by the trained 
ANN-based model. Finally, section Conclusion presents a 
summary of the conclusions.

Artificial Neuron and Neural Network

ANN offers robust methods for solving problems by extract-
ing and interpreting the patterns within a dataset. They 
simulate the neural structure of human visual processing by 
means of high-speed processing artificial neurons that pro-
duce a series of real-valued activations to learn solutions to a 
given problem [18]. Figure 1 (left side) illustrates an artificial 

neuron structure, comprising input data (x1, x2, ..., xj) with 
corresponding weights (wi1,wi2, ...,wij) , the activation func-
tion (f), and the resulting output ( ai ). The activation func-
tion computes the output of the neuron using the formula 
ai = f (

∑

j wijxj + bi) , where bi is the neuron bias. Figure 1 
(right side) visualizes an ANN composed of interconnected 
layers of neurons, consisting of an input layer, two hidden 
layers, and an output layer, highlighting the distinct layers 
and the flow of information between neurons. In this archi-
tecture, the output of each neuron in one layer represents 
the input for neurons in the subsequent layer, enabling the 
propagation of information through the network.

Neural networks learn by iteratively adjusting their 
parameters based on the error in predictions of the input 
data using a method called backpropagation. In this method, 
during the training process, the errors between the predicted 
and actual outputs are calculated and propagated backward 
through the network to update the weights, improving the 
network’s accuracy. A cost function is employed to measure 
the disparity between the actual output and the calculated 
output.

ANN‑based Tomography at GOLEM Tokamak

GOLEM Tokamak with Installed Fast Visible Cameras

The GOLEM tokamak is located at the faculty of Nuclear 
Physics an Physical Engineering (Czech Technical Univer-
sity in Prague). The diagnostic system to detect the visible 
plasma radiation consists of two crossed visible color cam-
eras installed on the same poloidal cross-section. On the 
left side of Fig. 2, the schematic of one GOLEM’s circular 
cross-section illustrates the Line of Sight (LoS) layout of 
the Radial (R) and Vertical (V) cameras, represented in pink 

Fig. 1   An artificial neuron structure (left side) and a neural network structure with the different layers (right side)



Journal of Fusion Energy (2024) 43:64	 Page 3 of 6  64

and blue, respectively. These cameras can achieve speeds of 
up to 204,800 frames per second (fps) with a resolution of 
1280 × 8 pixels in 12-bit ADC dynamic range [17]. Each 
pixel has a size of 10�m×10� m, and the cameras operate 
in the visible spectral range. In the current work, an ANN-
based tomography model is trained to predict radiation func-
tion of one cross-section using the images captured by these 
cameras.

Training Dataset

To construct a synthetic training dataset, 4000 emissivity 
phantoms of one GOLEM poloidal cross-section with asso-
ciated line integrated data was used. The left side of Fig. 2 
shows the phantom simulated on a square rectilinear grid 
with the appropriate pixel size. The line integrated measure-
ments represent the data measured by the LoS of the cam-
eras detectors, considered as the input of the neural network 
as illustrated on the middle side of Fig. 2. The intensity of 
the incident light radiation on the i-ith detector of each cam-
era is given by

where Tij is the element of the geometric matrix describing 
how the radiation emitted from the plasma located in j-th 
pixel of phantom contributes in the data measured by i-th 
detector [1]. In such training dataset, fi , calculated using the 
known function gj of phantom, and the phantom itself are 
respectively considered as the input and output. Then the 
trained ANN model will be able to reconstruct the unknown 
function gj for an unseen sample from the measured data fi.

(1)�� =
∑

j

��� ��,

Specifically, two images captured by R and V 
cameras and the corresponding radiation distribu-
tion of one cross section will be the input and output 
data of the trained model, respectively. In this repre-
sentation, the input and the output are described by 
ar rays  X = [R1o, ...,Rio, ...,RIo,V1o, ...,Vko, ...,VKo] and 
Y = [Z11, ..., Zmn, ..., ZMN] , respectively. The array elements 
Rio , Vko and Zmn are, respectively, the data corresponding to 
the middle line (o) of the discretized R image, V image and 
the plasma region grid with an M × N resolution, where 
the middle line of each image is considered for tomography 
reconstruction. By selecting a spatial resolution of 1280 × 56 
pixels for the cameras and a phantom with a square recti-
linear grid size of 40 × 40 pixels, the number of input and 
output features are 2560 and 1600, respectively.

While ANN’s are generally less reliable at predicting 
outside the range of the training data, the database was 
diversified to include various shapes (such as Gaussian, 
Hollow, and Banana shapes) in a wide range of intensity 
and position. However, ANN’s, especially deeper ones, can 
combine the detected features of dataset in non-linear ways 
[19]. Furthermore, each feature in the training dataset is 
normalized to ensure equal contribution to the model. The 
test data are then normalized using the parameters obtained 
during training.

Training Process

To train the predictive model, a neural network architecture 
specifically designed for the training dataset was developed. 
The neural network was modeled with an input layer of 2560 
neurons (number of input features), two hidden layers of 640 
and 320 neurons each, and an output layer of 1600 neurons 
(number of output features). A schematic representation of 

Fig. 2   Schematic diagram of the ANN model performed on the 
GOLEM tokamak. Left side: Schematic figure of one poloidal cross-
section of the GOLEM tokamak and the simulated phantom distribu-
tion with the LoS layout of R and V cameras, represented in pink and 
blue, respectively. Middle side: The line integrated measurements 

associated to the phantom data. Right side: The ANN architecture 
consisting of four layers of neurons that are fully connected. Neurons 
in the input layer and the output layer correspond to the line inte-
grated measurements and the grid pixels of the phantom, respectively
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the ANN framework is depicted on the right side of Fig. 2 
illustrating the inputs and outputs used to train the ANN 
model.

The key considerations in setting the training parameters 
include the choice of optimization algorithm, epochs, batch 
size, learning rate, regularization techniques, and selection 
of an appropriate loss function. The number of epochs speci-
fies how many times the entire training dataset is passed 
through the network which should be addressed for effec-
tive learning from the training data. A fixed learning rate 
promotes a stable training process, facilitating better gen-
eralization through consistent and gradual updates to the 
model’s parameters. Additionally, regularization techniques 
like dropout [20] help prevent overfitting by randomly deac-
tivating some neurons during training. Early stopping is 
another critical regularization technique that halts training 
when validation loss diverges from the training loss, prevent-
ing model overfitting.

To optimize the training process, we employed Adam, a 
popular variant of stochastic gradient descent (SGD). The 
training setup was empirically selected, featuring a mini-
batch size of ten samples, a learning rate of 0.0001, and 1500 
epochs. The model was trained by using eighty percent of 
the dataset (training dataset) and the remaining twenty per-
cent (validation dataset) was used to validation of the trained 
model. The cost function chosen to evaluate the deviation 
between the actual output value and the predicted value 
obtained by the network was the Mean Square Error (MSE). 
Figure 3 illustrates the trend of the loss function value for the 
training and validation datasets during the training process 
of the neural network. It shows that the losses in both the 
training and validation processes decrease gradually and are 
close to each other. Such variation indicates that the model 
is learning patterns without memorizing the training data 
(overfitting) that generalize to new, unseen data. 

Results and Discussion

The trained ANN model was applied on three unseen phan-
tom samples to predict the radiation function correspond-
ing to their line integrated measurements. The samples 
have various shapes similar to those in the training dataset. 
Subsequently, the backfit was evaluated to compare the 
line-integrated measurements of the ANN’s predictions 
with those of the phantom samples. Figure 4 shows (from 
left to right) the phantom sample, the ANN prediction of 
radiation function and the corresponding backfit of line-
integrated measurements for three unseen samples (from 
top to bottom). The result shows that the trained ANN 
model predicts the radiation function of samples very near 
to corresponding phantom. The backfit analysis confirms 
the reliability of the proposed ANN model in reconstruct-
ing the radiation function. However, noticeable fluctua-
tions in backfit are observed in certain spatial coordinates 
of the grid pixels for ring shape sample.

To evaluate the performance of the ANN model predic-
tions on the samples that are dissimilar to the training dataset 
but represent a mix of those samples, two ANN models was 
trained by two different training dataset. The first model, 
Model_1 was trained by using the training dataset consisting 
of various shapes such as Gaussian, Hollow, Banana shapes 
and mix of them. The second model, Model_2 was trained 
by using the training dataset consisting of various shapes 
such as Gaussian, Hollow, Banana shapes but without mix of 
them. The two trained models was performed to predict one 
sample which exist in the first training dataset (Model_1 ) 
but not in the second one but it is a mix of samples existing 
in the second one. As it is shown in Fig. 5, the phantom is a 
mix of Gaussian and banana shapes. Figure 5 shows (from 
left to right) the phantom sample, the ANN prediction of 
Model_1 , the ANN prediction of Model_2 and the corre-
sponding backfit of line integrated measurements, respec-
tively. The result shows that the model trained with a dataset 
dissimilar to the unseen samples (Model_2 ) can recognize 
the mixed shapes, but it does not provide accurate predic-
tions in certain spatial coordinates. Further training with a 
more diverse training dataset like Model_1 may be necessary 
to improve the model’s accuracy in these specific areas.

The ANN model requires time in order of 10 ms for 
prediction, which is significantly faster compared to the 
traditional tomography reconstruction time of around 3 s. 
The computations were done on the same device-regular 
laptop. This demonstrates a remarkable improvement in 
terms of speed, highlighting the efficiency of the ANN 
model in this application.

The optimization of the ANN model’s performance is 
influenced by various factors, including the quantity and 
quality of training data, data pre-processing, and feature Fig. 3   The trend of the loss function value for the training and valida-

tion dataset during the training process of the neural network
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reduction and selection. The work plan for the future 
involves enhancing these aspects. Additionally, pre-pro-
cessing methods to handle missing values to replace these 
missing values can improve the results in the context of 

being sparse the data. This can be achieved by incorpo-
rating additional diagnostic data. Furthermore, validat-
ing prediction data with n diagnostic inputs can further 
enhance model robustness and accuracy.

Fig. 4   From left to right: the phantom sample, the ANN prediction of radiation function and the corresponding backfit of line integrated meas-
urements for three unseen data samples (from top to bottom)

Fig. 5   From left to right: Phantom sample, the prediction of Model_1 , the prediction of Model_2 and the corresponding backfit of line integrated 
measurements, respectively
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Conclusion

The paper presents an artificial neural network model 
applied to predict the visible plasma radiation distribution at 
the GOLEM tokamak. The training dataset was constructed 
using samples consisting of emissivity phantoms and asso-
ciated line integrated measurements corresponding to one 
poloidal cross-section of GOLEM tokamak. The dataset was 
defined with different parameterization in distribution shape 
(Gaussian, Hollow, and Banana shapes) and with a different 
range of intensity value and size.

The backfit analysis of line-integrated measurements 
confirms the reliability of the trained ANN model in recon-
structing the radiation function. However, significant vari-
ations in backfit are observed at certain spatial coordinates 
of the grid pixels and also in unseen samples dissimilar to 
the training dataset. To address this, future work will focus 
on optimizing the ANN model’s performance, considering 
factors such as the quantity and quality of training dataset.

One of the key advantages of the ANN prediction model 
is its significantly shorter prediction time (approximately 
10 ms) compared to traditional tomography reconstruction 
methods (approximately 3 s).

Acknowledgements  This research has been supported from the Global 
Postdoc Fellowship Program of the Czech Technical University in 
Prague and RVO14000.

References

	 1.	 J. Mlynar, G. Bonheure, V. Weinzettl, A. Murari, JET-EFDA 
CONTRIBUTORS, Inversion techniques in the soft-x-ray tomog-
raphy of fusion plasmas: toward real-time applications. Fusion 
Sci. Technol. 58(3), 733–741 (2010)

	 2.	 P.J. Carvalho, H. Thomsen, R. Coelho, P. Duarte, C. Silva, H. 
Fernandes, Isttok plasma control with the tomography diagnostic. 
Fusion Eng. Des. 85(2), 266–271 (2010)

	 3.	 J. Mlynar, T. Craciunescu, D.R. Ferreira, P. Carvalho, O. Ficker, 
O. Grover, M. Imrisek, J. Svoboda, JET contributors, Current 
research into applications of tomography for fusion diagnostics. 
J. Fusion Energ. 38, 458–466 (2019)

	 4.	 P. Clemente Angioni, T. Pütterich, M. Mantica, M. Valisa, E.A. 
Baruzzo, P. Belli, F.J. Belo, C. Casson, P. Drewelow. Challis et al., 
Tungsten transport in jet h-mode plasmas in hybrid scenario, 
experimental observations and modelling. Nucl. Fusion 54(8), 
083028 (2014)

	 5.	 Diogo R. Ferreira, Pedro J. Carvalho, Ivo S. Carvalho, Chris Stu-
art, Peter J. Lomas, J.E.T. Contributors, Monitoring the plasma 
radiation profile with real-time bolometer tomography at jet. 
Fusion Eng. Des. 164, 112179 (2021)

	 6.	 W. Zheng, X.U. Fengming, S.H. Chengshuo, Y. Zhong, A.I. 
Xinkun, C.H. Zhongyong, D.I. Yonghua, M. Zhang, Y.A. Zhoujun 

et al., Overview of machine learning applications in fusion plasma 
experiments on j-text tokamak. Plasma Sci. Technol. 24(12), 
124003 (2022)

	 7.	 D. Wroblewski, G.L. Jahns, J.A. Leuer, Tokamak disruption alarm 
based on a neural network model of the high-beta limit. Nucl. 
Fusion 37(6), 725 (1997)

	 8.	 K.H. Jin, M.T. McCann, E. Froustey, M. Unser, Deep convo-
lutional neural network for inverse problems in imaging. IEEE 
Trans. Image Process. 26(9), 4509–4522 (2017)

	 9.	 D.R. Ferreira, P.J. Carvalho, H. Fernandes, J.E.T. Contributors, 
Full-pulse tomographic reconstruction with deep neural networks. 
Fusion Sci. Technol. 74(1–2), 47–56 (2018)

	10.	 A. Jardin, J. Bielecki, D. Mazon, J. Dankowski, K. Król, Y. Peys-
son, M. Scholz, Neural networks: from image recognition to 
tokamak plasma tomography. Laser Part. Beams 37(2), 171–175 
(2019)

	11.	 D.R. Ferreira, P.J. Carvalho, H. Fernandes, Deep learning for 
plasma tomography and disruption prediction from bolometer 
data. IEEE Trans. Plasma Sci. 48(1), 36–45 (2019)

	12.	 X. Liang, Z. Liu, H. Chang, L. Zhang, Wireless channel data aug-
mentation for artificial intelligence of things in industrial envi-
ronment using generative adversarial networks. in  2020 IEEE 
18th International Conference on Industrial Informatics (INDIN), 
IEEE, vol. 1, pp. 502–507 (2020)

	13.	 L.S. Van Leeuwen, Machine learning accelerated tomographic 
reconstruction: for multispectral imaging on TCV. Master's thesis, 
Eindhoven University of Technology (2022)

	14.	 S. Abbasi, J. Chlum, J. Mlynar, V. Svoboda, J. Svoboda, J. Bro-
tankova, Plasma diagnostics using fast cameras at the golem 
tokamak. Fusion Eng. Des. 193, 113647 (2023)

	15.	 J. Svoboda, J. Cavalier, O. Ficker, M. Imríšek, M. Hron, Tomotok: 
python package for tomography of tokamak plasma radiation. J. 
Instrum. 16(12), C12015 (2021)

	16.	 S. Abbasi, J. Mlynar, J. Chlum, V. Svoboda, J. Svoboda, O. 
Ficker, J. Brotankova, Machine-learning-based reconstruction 
of spatial distribution of plasma radiation using color visible 
cameras at golem tokamak. in  21st Conference of Czech and 
Slovak Physicists, Proceedings. Slovak Physical Society, ISBN 
978-808985521-6, pp. 59–60 (2023)

	17.	 Photron Europe Limited. Product datasheet Mini UX Fastcam 
series by photron, (2021)

	18.	 C.M. Bishop.  Neural networks for pattern recognition. Oxford 
university press, (1995)

	19.	 Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 
521(7553), 436–444 (2015)

	20.	 N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhut-
dinov, Dropout: a simple way to prevent neural networks from 
overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.


	Artificial Neural Network-Based Tomography Reconstruction of Plasma Radiation Distribution at GOLEM Tokamak
	Abstract
	Introduction
	Artificial Neuron and Neural Network
	ANN-based Tomography at GOLEM Tokamak
	GOLEM Tokamak with Installed Fast Visible Cameras
	Training Dataset
	Training Process

	Results and Discussion
	Conclusion
	Acknowledgements 
	References




